430 research outputs found

    The digital data processing concepts of the LOFT mission

    Full text link
    The Large Observatory for X-ray Timing (LOFT) is one of the five mission candidates that were considered by ESA for an M3 mission (with a launch opportunity in 2022 - 2024). LOFT features two instruments: the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD is a 10 m 2 -class instrument with approximately 15 times the collecting area of the largest timing mission so far (RXTE) for the first time combined with CCD-class spectral resolution. The WFM will continuously monitor the sky and recognise changes in source states, detect transient and bursting phenomena and will allow the mission to respond to this. Observing the brightest X-ray sources with the effective area of the LAD leads to enormous data rates that need to be processed on several levels, filtered and compressed in real-time already on board. The WFM data processing on the other hand puts rather low constraints on the data rate but requires algorithms to find the photon interaction location on the detector and then to deconvolve the detector image in order to obtain the sky coordinates of observed transient sources. In the following, we want to give an overview of the data handling concepts that were developed during the study phase.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91446

    On the Angular Resolution of the AGILE gamma-ray imaging detector

    Get PDF
    We present a study of the Angular Resolution of the AGILE gamma-ray imaging detector (GRID) that is operational in space since April 2007. The AGILE instrument is made of an array of 12 planes each equipped with a Tungsten converter and Silicon micros trip detectors and is sensitive in the energy range 50 MeV - 10 GeV. Among the space instruments devoted to gamma-ray astrophysics, AGILE uniquely exploits an analog readout system with dedicated electronics coupled with Silicon detectors. We show the results of Monte Carlo simulations carried out to reproduce the gamma-ray detection by the GRID, and we compare them to in-flight data. We use the Crab (pulsar + Nebula) system for discussion of real data performance, since its E^{-2} energy spectrum is representative of the majority of gamma-ray sources. For Crab-like spectrum sources, the GRID angular resolution (FWHM of ~4deg at 100 MeV; ~0.8deg at 1 GeV; ~0.9deg integrating the full energy band from 100 MeV to tens of GeV) is stable across a large field of view, being characterized by a flat response up to 30deg off-axis. A comparison of the angular resolution obtained by the two operational gamma-ray instruments, AGILE-GRID and Fermi-LAT, is interesting in view of future gamma-ray missions, that are currently under study. The two instruments exploit different detector configurations affecting the angular resolution: the former being optimized in the readout and track reconstruction especially in the low-energy band, the latter in terms of converter thickness and power consumption. We show that, despite these differences, the angular resolution of both instruments is very similar between 100 MeV and a few GeV.Comment: 19 pages, 8 figures, accepted for publication in Ap

    Threshold neutral pion photoproduction off the tri-nucleon to O(q^4)

    Get PDF
    We calculate electromagnetic neutral pion production off tri-nucleon bound states (3H, 3He) at threshold in chiral nuclear effective field theory to fourth order in the standard heavy baryon counting. We show that the fourth order two-nucleon corrections to the S-wave multipoles at threshold are very small. This implies that a precise measurement of the S-wave cross section for neutral pion production off 3He allows for a stringent test of the chiral perturbation theory prediction for the S-wave electric multipole E_{0+}^{pi0 n}.Comment: 17 pages, 5 figures, title changed, final version to appear in EPJA. arXiv admin note: substantial text overlap with arXiv:1103.340

    Is the tetraneutron a bound dineutron-dineutron molecule?

    Get PDF
    In light of a new experiment which claims a positive identification, we discuss the possible existence of the tetraneutron. We explore a novel model based on a dineutron-dineutron molecule. We show that this model is not able to explain the tetraneutron as a bound state, in agreement with other theoretical models already discussed in the literature.Comment: 9 pages, 3 figures, J. Phys. G, in pres

    The Agile Alert System For Gamma-Ray Transients

    Full text link
    In recent years, a new generation of space missions offered great opportunities of discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and extragalactic origins. This work presents the AGILE innovative approach to fast gamma-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe: (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for gamma-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, e-mails, and push notifications of an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in gamma-ray astrophysics.Comment: 34 pages, 9 figures, 5 table

    The LOFT Ground Segment

    Full text link
    LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We describe the expected GS contributions from ESA and the LOFT consortium. A review is provided of the planned LOFT data products and the details of the data flow, archiving and distribution. Despite LOFT was not selected for launch within the M3 call, its long assessment phase (> 2 years) led to a very solid mission design and an efficient planning of its ground operations.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91446

    AGILE Observations of the Gravitational Wave Event GW150914

    Get PDF
    We report the results of an extensive search in the AGILE data for a gamma-ray counterpart of the LIGO gravitational wave event GW150914. Currently in spinning mode, AGILE has the potential of covering with its gamma-ray instrument 80 % of the sky more than 100 times a day. It turns out that AGILE came within a minute from the event time of observing the accessible GW150914 localization region. Interestingly, the gamma-ray detector exposed about 65 % of this region during the 100 s time intervals centered at -100 s and +300 s from the event time. We determine a 2-sigma flux upper limit in the band 50 MeV - 10 GeV, UL=1.9×10−8 erg cm−2 s−1UL = 1.9 \times 10^{-8} \rm \, erg \, cm^{-2} \, s^{-1} obtained about 300 s after the event. The timing of this measurement is the fastest ever obtained for GW150914, and significantly constrains the electromagnetic emission of a possible high-energy counterpart. We also carried out a search for a gamma-ray precursor and delayed emission over timescales ranging from minutes to days: in particular, we obtained an optimal exposure during the interval -150 / -30 s. In all these observations, we do not detect a significant signal associated with GW150914. We do not reveal the weak transient source reported by Fermi-GBM 0.4 s after the event time. However, even though a gamma-ray counterpart of the GW150914 event was not detected, the prospects for future AGILE observations of gravitational wave sources are decidedly promising.Comment: 20 pages, 6 figures. Submitted to the Astrophysical Journal Letters on April 1, 201
    • …
    corecore